AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa.

在视网膜色素变性大鼠模型中,AAV介导的视网膜胶质细胞GDNF分泌可减缓视网膜退化

阅读:4
作者:Dalkara Deniz, Kolstad Kathleen D, Guerin Karen I, Hoffmann Natalie V, Visel Meike, Klimczak Ryan R, Schaffer David V, Flannery John G
Mutations in over 80 identified genes can induce apoptosis in photoreceptors, resulting in blindness with a prevalence of 1 in 3,000 individuals. This broad genetic heterogeneity of disease impacting a wide range of photoreceptor functions renders the design of gene-specific therapies for photoreceptor degeneration impractical and necessitates the development of mutation-independent treatments to slow photoreceptor cell death. One promising strategy for photoreceptor neuroprotection is neurotrophin secretion from Müller cells, the primary retinal glia. Müller glia are excellent targets for secreting neurotrophins as they span the entire tissue, ensheath all neuronal populations, are numerous, and persist through retinal degeneration. We previously engineered an adeno-associated virus (AAV) variant (ShH10) capable of efficient and selective glial cell transduction through intravitreal injection. ShH10-mediated glial-derived neurotrophic factor (GDNF) secretion from glia, generates high GDNF levels in treated retinas, leading to sustained functional rescue for over 5 months. This GDNF secretion from glia following intravitreal vector administration is a safe and effective means to slow the progression of retinal degeneration in a rat model of retinitis pigmentosa (RP) and shows significant promise as a gene therapy to treat human retinal degenerations. These findings also demonstrate for the first time that glia-mediated secretion of neurotrophins is a promising treatment that may be applicable to other neurodegenerative conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。