The selection of cross-linking techniques is essential for the development of the alginate matrix. In this study, we investigated porous sodium alginate matrices (ALG1@in, ALG3@in, ALG5@in) synthesized by internal gelation and further functionalized with polyphosphate (PP) at concentrations of 5% and 15% (ALG3@inPP5, ALG3@inPP15). Extensive characterizations were conducted, employing scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS) for morphological and compositional analysis, Fourier transform infrared spectroscopy (FTIR-ATR) for structural elucidation, thermogravimetric analysis (TGA-DTG) for thermal stability, and porosimetry (ASAP) for surface area and pore size evaluation. Surface charge density (pH(ZPC)) was determined, and Ca(2)⺠release kinetics were monitored in demineralized water over 7 days and Dulbecco's phosphate-buffered saline (DPBS) over 14 days. The increase in sodium alginate concentration increases the BET surface area and pore volume, which improves adsorption and transport properties. The thermal stability of the tested matrices at 37 °C confirms their suitability for biomedical applications. The ALG3@in sample showed the best parameters, combining high BET surface area (11.02 m(2)/g), significant pore volume (0.08 cm(3)/g) and thermal stability up to 257 °C, making it a suitable candidate for applications in biology, tissue engineering and processes requiring sterilization and high temperatures. These findings underscore the potential of polyphosphate modifications to improve alginate matrices, opening avenues for future applications in areas like cell culture scaffolds or environmental chemistry solutions.
Comprehensive Physicochemical Analysis of Polyphosphate-Modified Alginate Matrices: Synthesis, Structural Analysis, and Calcium Ion Release Dynamics.
聚磷酸盐改性藻酸盐基质的综合物理化学分析:合成、结构分析和钙离子释放动力学
阅读:5
作者:Wawszczak Alicja, Czemierska Magdalena, Jarosz-WilkoÅazka Anna, KoÅodyÅska Dorota
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Feb 28; 18(5):1114 |
| doi: | 10.3390/ma18051114 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
