Control of morphogenesis during the Staphylococcus aureus cell cycle.

金黄色葡萄球菌细胞周期中形态发生的控制

阅读:6
作者:Tinajero-Trejo Mariana, Aindow Matthew, Pasquina-Lemonche Laia, Lafage Lucia, Adedeji-Olulana Abimbola Feyisara, Sutton Joshua A F, Wacnik Katarzyna, Jia Yaosheng, Bilyk Bohdan, Yu Wenqi, Hobbs Jamie K, Foster Simon J
Bacterial cell division is a complex, multistage process requiring septum development while maintaining cell wall integrity. A dynamic, macromolecular protein complex, the divisome, tightly controls morphogenesis both spatially and temporally, but the mechanisms that tune septal progression are largely unknown. By studying conditional mutants of genes encoding DivIB, DivIC, and FtsL, an essential trimeric complex central to cell division in bacteria, we demonstrate that FtsL and DivIB play independent, hierarchical roles coordinating peptidoglycan synthesis across specific septal developmental checkpoints. They are required for the localization of downstream divisome components and the redistribution of peptidoglycan synthesis from the cell periphery to the septum. This is achieved by positive regulation of septum production and negative regulation of peripheral cell wall synthesis. Our analysis has led to a model for the coordination of cell division in Staphylococcus aureus, forming a framework for understanding how protein localization and function are integrated with cell wall structural dynamics across the bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。