MACNet: A Multidimensional Attention-Based Convolutional Neural Network for Lower-Limb Motor Imagery Classification.

MACNet:一种用于下肢运动想象分类的多维注意力卷积神经网络

阅读:3
作者:Li Ling-Long, Cao Guang-Zhong, Zhang Yue-Peng, Li Wan-Chen, Cui Fang
Decoding lower-limb motor imagery (MI) is highly important in brain-computer interfaces (BCIs) and rehabilitation engineering. However, it is challenging to classify lower-limb MI from electroencephalogram (EEG) signals, because lower-limb motions (LLMs) including MI are excessively close to physiological representations in the human brain and generate low-quality EEG signals. To address this challenge, this paper proposes a multidimensional attention-based convolutional neural network (CNN), termed MACNet, which is specifically designed for lower-limb MI classification. MACNet integrates a temporal refining module and an attention-enhanced convolutional module by leveraging the local and global feature representation abilities of CNNs and attention mechanisms. The temporal refining module adaptively investigates critical information from each electrode channel to refine EEG signals along the temporal dimension. The attention-enhanced convolutional module extracts temporal and spatial features while refining the feature maps across the channel and spatial dimensions. Owing to the scarcity of public datasets available for lower-limb MI, a specified lower-limb MI dataset involving four routine LLMs is built, consisting of 10 subjects over 20 sessions. Comparison experiments and ablation studies are conducted on this dataset and a public BCI Competition IV 2a EEG dataset. The experimental results show that MACNet achieves state-of-the-art performance and outperforms alternative models for the subject-specific mode. Visualization analysis reveals the excellent feature learning capabilities of MACNet and the potential relationship between lower-limb MI and brain activity. The effectiveness and generalizability of MACNet are verified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。