Inhibitory Effects of IL-6-Mediated Matrix Metalloproteinase-3 and -13 by Achyranthes japonica Nakai Root in Osteoarthritis and Rheumatoid Arthritis Mice Models

牛膝根对骨关节炎和类风湿性关节炎小鼠模型中 IL-6 介导的基质金属蛋白酶-3 和 -13 的抑制作用

阅读:5
作者:Xiangyu Zhao, Dahye Kim, Godagama Gamaarachchige Dinesh Suminda, Yunhui Min, Jiwon Yang, Mangeun Kim, Yaping Zhao, Mrinmoy Ghosh, Young-Ok Son

Abstract

Achyranthes japonica Nakai root (AJNR) is used to treat osteoarthritis (OA) and rheumatoid arthritis (RA) owing to its anti-inflammatory and antioxidant effects. This study investigated the inhibitory effects of AJNR on arthritis. AJNR was extracted using supercritical carbon dioxide (CO2), and its main compounds, pimaric and kaurenoic acid, were identified. ANJR's inhibitory effects against arthritis were evaluated using primary cultures of articular chondrocytes and two in vivo arthritis models: destabilization of the medial meniscus (DMM) as an OA model, and collagenase-induced arthritis (CIA) as an RA model. AJNR did not affect pro-inflammatory cytokine (IL-1β, TNF-α, IL-6)-mediated cytotoxicity, but attenuated pro-inflammatory cytokine-mediated increases in catabolic factors, and recovered pro-inflammatory cytokine-mediated decreases in related anabolic factors related to in vitro. The effect of AJNR is particularly specific to IL-6-mediated catabolic or anabolic alteration. In a DMM model, AJNR decreased cartilage erosion, subchondral plate thickness, osteophyte size, and osteophyte maturity. In a CIA model, AJNR effectively inhibited cartilage degeneration and synovium inflammation in either the ankle or knee and reduced pannus formation in both the knee and ankle. Immunohistochemistry analysis revealed that AJNR mainly acted via the inhibitory effects of IL-6-mediated matrix metalloproteinase-3 and -13 in both arthritis models. Therefore, AJNR is a potential therapeutic agent for relieving arthritis symptoms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。