Drying Kinetic Modeling and Assessment of Mineral Content, Antimicrobial Activity, and Potential α-Glucosidase Activity Inhibition of a Green Seaweed (Ulva spp.) Subjected to Different Drying Methods.

不同干燥方法对绿藻(Ulva spp.)的干燥动力学建模及矿物质含量、抗菌活性和潜在α-葡萄糖苷酶活性抑制的影响评估

阅读:3
作者:Vega-Gálvez Antonio, Uribe Elsa, Gómez-Pérez Luis S, García Vivian, Mejias Nicol, Pastén Alexis
The green algal genus Ulva grows widely on all continents and is used for several applications such as functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals due to its nutritional characteristics. However, to increase its shelf-life and retain its bioactive components, it is necessary to apply some conservation technology, such as drying. The aim of this work is to describe the drying kinetic behavior of the green seaweed Ulva spp. by applying three dehydration methods: convective drying (CD), vacuum drying (VD), and solar drying (SD) by mathematical modeling and determining the retention of mineral content by atomic absorption spectroscopy and the antimicrobial potential against four strains such as Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, and Penicillium sp. by measurement of inhibition zones and α-glucosidase activity inhibition, as reported by IC(50) determination. A freeze-dried sample was used as the control. The equilibrium moisture values calculated using the Guggenheim-Anderson-de Boer model were 0.0108, 0.0108, and 0.0290 g water/g d.m., for CD, VD and SD, respectively. The Midilli and Kucuk model showed robustness to fit all the experimental data of drying kinetic modeling. Ulva spp. is an important source of potassium with a ratio of Na/K < 0.29. Inhibition halos were observed in all samples against S. cerevisiae and Penicillium sp. with higher values than fluconazole action. An inhibitory effect on α-glucosidase activity was observed in all samples, mainly in the freeze-dried sample. Finally, dried Ulva spp. is a rich source of macro- and microminerals with antimicrobial activity and is a potential α-glucosidase inhibitor. Thus, it can be considered as a potential functional ingredient for food manufacturing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。