β-glucan induced trained immunity enhances antibody levels in a vaccination model in mice.

β-葡聚糖诱导的训练免疫可提高小鼠疫苗接种模型中的抗体水平

阅读:4
作者:Ajit Jainu, Chen Qing, Ung Trevor, Rosenberger Matthew, Kim Jeremiah, Solanki Ani, Shen Jingjing, Esser Kahn Aaron P
Trained immunity improves disease resistance by strengthening our first line of defense, the innate immune system. Innate immune cells, predominantly macrophages, are epigenetically and metabolically rewired by β-glucan, a fungal cell wall component, to induce trained immunity. These trained macrophages exhibit increased co-stimulatory marker expression and altered cytokine production. Signaling changes from antigen-presenting cells, including macrophages, polarize T-cell responses. Recent work has shown that trained immunity can generally enhance protection against infection, and some work has shown increased protection with specific vaccines. It has been hypothesized that the trained cells themselves potentially modulate adaptive immunity in the context of vaccines. However, the mechanistic link between trained immunity and subsequent vaccinations to enhance antibody levels has not yet been identified. We report that trained immunity induced by a single dose of β-glucan increased antigen presentation in bone-marrow-derived macrophages (BMDMs) and CD4+ T cell proliferation in-vitro. Mice trained with a single dose of β-glucan a week before vaccination elicited higher antigen-specific antibody levels than untrained mice. Further experiments validate that macrophages mediate this increase. This effect persisted even after vaccinations with 100 times less antigen in trained mice. We report β-glucan training as a novel prophylactic method to enhance the effect of subsequent vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。