Nitrosative stress-induced s-glutathionylation of protein disulfide isomerase leads to activation of the unfolded protein response

亚硝化应激诱导的蛋白质二硫键异构酶 s-谷胱甘肽化导致未折叠蛋白反应的激活

阅读:5
作者:Danyelle M Townsend, Yefim Manevich, Lin He, Ying Xiong, Robert R Bowers Jr, Steven Hutchens, Kenneth D Tew

Abstract

The rapid proliferation of cancer cells mandates a high protein turnover. The endoplasmic reticulum (ER) is intimately involved in protein processing. An accumulation of unfolded or misfolded proteins in the ER leads to a cascade of transcriptional and translational events collectively called the unfolded protein response (UPR). Protein disulfide isomerase (PDI) is one of the most abundant ER proteins and maintains a sentinel function in organizing accurate protein folding. Treatment of cells with O(2)-[2,4-dinitro-5-(N-methyl-N-4-carboxyphenylamino)phenyl]1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO) resulted in a dose-dependent increase in intracellular nitric oxide that caused S-glutathionylation of various proteins. Within 4 h, PABA/NO activated the UPR and led to translational attenuation as measured by the phosphorylation and activation of the ER transmembrane kinase, pancreatic ER kinase, and its downstream effector eukaryotic initiation factor 2 in human leukemia (HL60) and ovarian cancer cells (SKOV3). Cleavage of the transcription factor X-box protein 1 and transcriptional activation of the ER resident proteins BiP, PDI, GRP94, and ERO1 (5- to 10-fold induction) also occurred. Immunoprecipitation of PDI showed that whereas nitrosylation was undetectable, PABA/NO treatment caused S-glutathionylation of PDI. Mass spectroscopy analysis showed that single cysteine residues within each of the catalytic sites of PDI had a mass increase [+305.3 Da] consistent with S-glutathionylation. Circular dichroism confirmed that S-glutathionylation of PDI results in alterations in the alpha-helix content of PDI and is concurrent with inhibition of its isomerase activity. Thus, it appears that S-glutathionylation of PDI is an upstream signaling event in the UPR and may be linked with the cytotoxic potential of PABA/NO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。