Volatile anesthetics have been widely applied during surgery, but the potential mechanisms by which they influence loss of consciousness (LOC), anesthesia maintenance, and recovery of consciousness (ROC) from anesthesia remain largely unknown. Recent studies have suggested that anesthesia-induced unconsciousness may be due to specific interactions between neural circuits that regulate sleep and wakefulness. Supramammillary (SuM) glutamatergic neurons are essential for sleep-wakefulness regulation. However, whether SuM glutamatergic neurons are involved in the modulation of consciousness under sevoflurane anesthesia is unclear. Here, it is shown that the activity of SuM glutamatergic neurons decreased prior to sevoflurane-induced LOC and gradually increased following ROC. Selective lesioning of SuM glutamatergic neurons promoted the induction of and delayed emergence from sevoflurane anesthesia and increased sevoflurane sensitivity. In addition, optogenetic stimulation of SuM glutamatergic neurons or the SuM-MS projection promoted behavioral arousal and cortical activation under steady-state sevoflurane anesthesia (SSSA) and reduced the depth of anesthesia and caused cortical arousal under sevoflurane-induced burst-suppression conditions. Collectively, these results provide compelling evidence that SuM glutamatergic neurons contribute to regulating states of consciousness under sevoflurane anesthesia.
Activation of Glutamatergic Neurons in the Supramammillary Nucleus Promotes the Recovery of Consciousness under Sevoflurane Anesthesia.
激活乳头体上核谷氨酸能神经元可促进七氟醚麻醉下意识的恢复
阅读:9
作者:Li Jiayan, Wu Yehui, Wang Yihan, Wu Yumin, Hu Rong, Long Si, Huang Wenqi, Nie Liming, Wang Zhongxing
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Jun;12(21):e2406959 |
| doi: | 10.1002/advs.202406959 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
