Early life sleep disruption alters glutamate and dendritic spines in prefrontal cortex and impairs cognitive flexibility in prairie voles.

早期睡眠紊乱会改变草原田鼠前额皮质中的谷氨酸和树突棘,并损害其认知灵活性

阅读:4
作者:Jones Carolyn E, Chau Alex Q, Olson Randall J, Moore Cynthia, Wickham Peyton T, Puranik Niyati, Guizzetti Marina, Cao Hung, Meshul Charles K, Lim Miranda M
Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14-21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting cognitive flexibility, an mPFC-dependent behavior. ELSD caused impaired cued fear extinction (indicating cognitive inflexibility), increased dendritic spine density, and decreased glutamate immunogold-labeling in vesicular glutamate transporter 1 (vGLUT1)-labeled presynaptic nerve terminals within mPFC. Our results have profound implications for neurodevelopmental disorders in humans such as autism spectrum disorder that also show poor sleep, impaired social behavior, cognitive inflexibility, as well as altered dendritic spine density and glutamate changes in mPFC, and imply that poor sleep may cause these changes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。