Localization of activator protein-1 complex with DNA binding activity in mitochondria of murine brain after in vivo treatment with kainate.

用红藻氨酸进行体内处理后,激活蛋白-1复合物在小鼠脑线粒体中具有DNA结合活性

阅读:6
作者:Ogita Kiyokazu, Okuda Hiroaki, Kitano Masahiro, Fujinami Yoshiaki, Ozaki Kiyokazu, Yoneda Yukio
To elucidate mechanisms underlying mitochondrial dysfunctions induced by glutamate, we have examined the effects of in vivo treatment with the ionotropic glutamate receptor agonist kainate on localization of the transcription factor activator protein-1 (AP-1) in mitochondria as well as nuclei of murine brain. A systemic administration of kainate dramatically enhanced AP-1 DNA binding in both mitochondrial and nuclear extracts of mouse cerebral cortex and hippocampus 1 hr to 3 d later. Unlabeled AP-1 probe selectively competed for AP-1 DNA binding in mitochondrial extracts of cortex and hippocampus obtained from mice injected with kainate. Supershift and immunoblotting analyses revealed participation of c-Fos, Fos-B, and Jun-B proteins in potentiation by kainate of mitochondrial AP-1 DNA binding in cortex and hippocampus. An immunohistochemical study demonstrated marked expression by kainate of c-Fos protein in the pyramidal and dentate granular layers, whereas an immunoelectron microscopic analysis showed localization of c-Fos protein within mitochondria, as well as nuclei, of the CA1 pyramidal and dentate granular cells in hippocampus obtained 2 hr after the administration of kainate. Mitochondrial AP-1 DNA binding was inhibited by particular unlabeled oligonucleotides containing sequences similar to the AP-1 site found in the noncoding region of mitochondrial DNA. Kainate markedly potentiated binding of radiolabeled oligonucleotide probes containing sequences effective in competing for AP-1 DNA binding in hippocampal mitochondrial extracts. These results suggest that kainate may facilitate expression of the AP-1 complex and subsequent translocation into mitochondria to participate in mechanisms associated with transcriptional regulation of mitochondrial DNA in murine hippocampus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。