This study presents a synthesis method for environmentally friendly copper nanoparticles using ascorbic acid and gelatin as key components. The influence of precursor concentration, reductant amount, and stabilizer on the process was systematically investigated to obtain optimal results for the synthesis. The optimal parameters for forming copper nanoparticles, including 20 g per L gelatin, 19.3 mM (AcO)(2)Cu, and 41.5 mM ascorbic acid, were determined using a central composite design of the response surface methodology. Successful generation of pure copper nanoparticles with both spherical and cylindrical shapes, whose sizes were 43.1 and 105.2 nm, respectively, was confirmed by X-ray diffraction analysis and transmission electron microscopy. The synthesized nanomaterial was stable for a two-week storage time after which they gradually oxidized into Cu(2+) ions. During antimicrobial activity testing, the synthesized nanoparticles displayed distinctive ability to inhibit the growth of Gram-positive bacteria (Lactobacillus fermentum, Bacillus subtilis, and Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and cancer cells (A549, Hep-G2, KB, and MCF7). Copper nanoparticles synthesized by chemical reduction demonstrated notable inhibitory activity against various pathogenic fungi that affect plants, including Fusarium solani, Rhizoctonia solani, and Colletotrichum gloeosporioides. Additionally, the catalytic activity of the produced nanomaterial with a bandgap energy of 2.14 eV and a specific surface area of 40.6 m(2) g(-1) was explored in the degradation of phenol, a common dye used in laboratories and industries. An optimized phenol red removal of 94.4% was achieved after a 540 second reaction time using response surface methodology, specifically a central composite design with an optimal dosage of copper nanoparticles at 31.5 ppm, a NaBH(4) concentration of 53.1 mM, and a pH of 7.5.
Studying the synthesis, antimicrobial activity, and phenol red removal of gelatin-stabilized copper nanoparticles.
研究明胶稳定铜纳米粒子的合成、抗菌活性及酚红去除性能
阅读:10
作者:Nguyen Trung Dien, Ngo Sang Thanh, Hoang Yen Hai, Thai Nhung Thi Tuyet, Nguyen Huong Thi Thu, Trinh Gia Thi Ngoc
| 期刊: | Nanoscale Advances | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2024 Nov 19; 7(2):477-494 |
| doi: | 10.1039/d4na00449c | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
