Dietary salt induces taste desensitization via receptor internalization in Drosophila in a sexually dimorphic manner.

饮食中的盐分通过受体内化以性别二态性的方式诱导果蝇味觉脱敏

阅读:8
作者:Jin Linni, Kim Chul Hoon, Seo Jeong Taeg, Moon Seok Jun
Sodium homeostasis, which is critical for survival, includes mechanisms for regulating salt intake that integrate central neural pathways with the peripheral taste system. Although the central homeostatic mechanisms of salt appetite are well-studied, the mechanisms by which dietary salt modulates peripheral taste responses remain unclear. We found increased dietary salt reduces salt preference in Drosophila by desensitizing sweet gustatory receptor neurons independent of internal sodium levels. We observed a reversible suppression of salt-evoked neural responses following salt exposure accomplished via clathrin-mediated endocytosis in males and both clathrin- and C-terminal binding protein-dependent endocytosis in females. We also found reversing gustatory receptor neuron sexual identity switched the desensitization pattern, indicating cell-autonomous control of this sexual dimorphism. Moreover, C-terminal binding protein-mediated macropinocytosis in females also dampened sweet taste responses, revealing a sex- and modality-specific mechanism underlying sensory adaptation. These findings reveal dietary experience can affect feeding behavior by reprograming peripheral taste responses, clarifying the plasticity of nutrient sensing.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。