The lymphatic system branches throughout the body to transport bodily fluid and plays a key immune-response role. Optical coherence tomography (OCT) is an emerging technique for the noninvasive and label-free imaging of lymphatic capillaries utilizing low scattering features of the lymph fluid. Here, the proposed lymphatic segmentation method combines U-Net-based CNN, a Hessian vesselness filter, and a modified intensity-thresholding to search the nearby pixels based on the binarized Hessian mask. Compared to previous approaches, the method can extract shapes more precisely, and the segmented result contains minimal artifacts, achieves the dice coefficient of 0.83, precision of 0.859, and recall of 0.803.
Lymphatic vessel segmentation in optical coherence tomography by adding U-Net-based CNN for artifact minimization.
通过添加基于 U-Net 的 CNN 来减少伪影,从而实现光学相干断层扫描中的淋巴管分割
阅读:5
作者:Lai Pei-Yu, Chang Chung-Hsing, Su Hong-Ren, Kuo Wen-Chuan
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2020 | 起止号: | 2020 Apr 23; 11(5):2679-2693 |
| doi: | 10.1364/BOE.389373 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
