Clonal analysis in mice underlines the importance of rhombomeric boundaries in cell movement restriction during hindbrain segmentation.

小鼠的克隆分析强调了菱脑节段边界在后脑节段化过程中限制细胞运动的重要性

阅读:4
作者:Jimenez-Guri Eva, Udina Frederic, Colas Jean-François, Sharpe James, Padrón-Barthe Laura, Torres Miguel, Pujades Cristina
BACKGROUND: Boundaries that prevent cell movement allow groups of cells to maintain their identity and follow independent developmental trajectories without the need for ongoing instructive signals from surrounding tissues. This is the case of vertebrate rhombomeric boundaries. Analysis in the developing chick hindbrain provided the first evidence that rhombomeres are units of cell lineage. The appearance of morphologically visible rhombomeres requires the segment restricted expression of a series of transcription factors, which position the boundaries and prefigure where morphological boundaries will be established. When the boundaries are established, when the cells are committed to a particular rhombomere and how they are organized within the hindbrain are important questions to our understanding of developmental regionalization. METHODOLOGY/PRINCIPAL FINDINGS: Sophisticated experimental tools with high-resolution analysis have allowed us to explore cell lineage restriction within the hindbrain in mouse embryos. This novel strategy is based on knock-in alleles of ubiquitous expression and allows unrestricted clonal analysis of cell lineage from the two-cell stage to the adult mouse. Combining this analysis with statistical and mathematical tools we show that there is lineage compartmentalization along the anteroposterior axis from very early stages of mouse embryonic development. CONCLUSIONS: Our results show that the compartment border coincides with the morphological boundary in the mouse hindbrain. The restriction of the cells to cross rhombomeric boundaries seen in chick is also observed in mouse. We show that the rhombomeric boundaries themselves are involved in cell movement restriction, although an underlying pre-pattern during early embryonic development might influence the way that cell populations organize.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。