Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days. Four colorimetric techniques were used: total phenol, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric reducing antioxidant power (FRAP), and DPPH (1,1-diphenyl-2-picrylhydrazyl). Subsequently, in stage 2, the selected aqueous extract was used, and two response surface designs were performed. The objective of this study was to find a model equation that would indicate the optimal parameters for obtaining AuNRs with a surface plasmon band at 808 nm, with possible applications in the health field. The results of the antioxidant capacity experiments were analyzed in Minitab® using a multilevel factorial design, and the peel exhibited the highest antioxidant capacity. Subsequently, the biosynthesis of AuNRs proceeded using a 5-factor response surface experimental design as input variables (concentration in mM of gold, silver, extract, NaBH4, and reaction time in hours) and longitudinal plasmon (LSPR) as output variables. The AuNRs were approximately 30 nm in size with an LSPR between 700 and 800 nm. Statistical model evaluation revealed a dependence between gold and time and gold-silver factors. Finally, antioxidant capacity was used to select the part (peel or pulp) of sour guava that could be used as a weak reducing agent. Moreover, the utility of surface-response methodology was explored to optimize the synthesis of AuNRs using green agents.
Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants.
以去皮酸番石榴水提取物为抗氧化剂来源,优化金纳米棒的绿色合成
阅读:5
作者:Patiño-González M Camila, Echeverri-Cuartas Claudia E, Torijano-Gutiérrez Sandra, Naranjo-Rios Sandra Milena, Agudelo Natalia A
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jan 8; 20(1):e0313485 |
| doi: | 10.1371/journal.pone.0313485 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
