Intensity-Product-Based Optical Sensing to Beat the Diffraction Limit in an Interferometer.

基于强度乘积的光学传感突破干涉仪衍射极限

阅读:5
作者:Ham, Byoung, S
The classically defined minimum uncertainty of the optical phase is known as the standard quantum limit or shot-noise limit (SNL), originating in the uncertainty principle of quantum mechanics. Based on the SNL, the phase sensitivity is inversely proportional to K, where K is the number of interfering photons or statistically measured events. Thus, using a high-power laser is advantageous to enhance sensitivity due to the K gain in the signal-to-noise ratio. In a typical interferometer, however, the resolution remains in the diffraction limit of the K = 1 case unless the interfering photons are resolved as in quantum sensing. Here, a projection measurement method in quantum sensing is adapted for classical sensing to achieve an additional K gain in the resolution. To understand the projection measurements, several types of conventional interferometers based on N-wave interference are coherently analyzed as a classical reference and numerically compared with the proposed method. As a result, the Kth-order intensity product applied to the N-wave spectrometer exceeds the diffraction limit in classical sensing and the Heisenberg limit in quantum sensing, where the classical N-slit system inherently satisfies the Heisenberg limit of π/N in resolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。