Coconut (Cocos nucifera L.) and Carob (Ceratonia siliqua L.) Flours Dietary Fibers Differentially Impact Fecal Microbiota Composition and Metabolic Outputs In Vitro.

椰子(Cocos nucifera L.)和角豆(Ceratonia siliqua L.)粉膳食纤维对体外粪便微生物群组成和代谢输出的影响不同

阅读:8
作者:Arioglu-Tuncil Seda, Deemer Dane, Lindemann Stephen R, Tunçil Yunus E
Alternative flours can reveal beneficial health effects. The aim of this study was to evaluate and compare the effects of dietary fibers (DFs) of coconut and carob flours on colonic microbiota compositions and function. Coconut flour DFs were found to be dominated by mannose-containing polysaccharides by gas chromatography (GC)/MS and spectrophotometer, whereas glucose and uronic acid were the main monosaccharide moieties in carob flour DFs. In vitro fecal fermentation analysis revealed that coconut flour DFs result in the generation of microbial butyrate as much as inulin does, which is known to be a butyrogenic prebiotic, but at a slower rate. Supportingly, coconut flour DFs promoted butyrate-producing bacteria including Roseburia and Coprococcus, whereas carob flour DFs stimulated Prevotella-related OTUs. In addition, higher microbial diversity was achieved at the end of the fermentation of coconut flour DFs by the fecal microbiota. This study clearly shows that alternative flours have distinct functionalities in terms of colonic microbiota composition and function, and coconut flour could be used as an alternative flour for the development of functional food products targeting colonic health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。