BACKGROUND: The insulin-like growth factor 1 receptor (IGF-1R) plays numerous crucial roles in cancer biology. The majority of knowledge on IGF-1R signaling is concerned with its role in the activation of the canonical phosphatidyl inositol-3 kinase (PI3K)/Akt and MAPK/ERK pathways. However, the role of IGF-1R ubiquitination in modulating IGF-1R function is an area of current research. In light of this we sought to determine the relationship between IGF-1R phosphorylation, ubiquitination, and modulation of growth signals. METHODOLOGY: Wild type and mutant constructs of IGF-1R were transfected into IGF-1R null fibroblasts. IGF-1R autophosphorylation and ubiquitination were determined by immunoprecipitation and western blotting. IGF-1R degradation and stability was determined by cyclohexamide-chase assay in combination with lysosome and proteasome inhibitors. PRINCIPAL FINDINGS: IGF-1R autophosphorylation was found to be an absolute requirement for receptor ubiquitination. Deletion of C-terminal domain had minimal effect on IGF-1 induced receptor autophosphorylation, however, ubiquitination and ERK activation were completely abolished. Cells expressing kinase impaired IGF-1R, exhibited both receptor ubiquitination and ERK phosphorylation, however failed to activate Akt. While IGF-1R mutants with impaired PI3K/Akt signaling were degraded mainly by the proteasomes, the C-terminal truncated one was exclusively degraded through the lysosomal pathway. CONCLUSIONS: Our data suggest important roles of ubiquitination in mediating IGF-1R signaling and degradation. Ubiquitination of IGF-1R requires receptor tyrosine kinase activity, but is not involved in Akt activation. In addition we show that the C-terminal domain of IGF-1R is a necessary requisite for ubiquitination and ERK phosphorylation as well as for proteasomal degradation of the receptor.
Role of ubiquitination in IGF-1 receptor signaling and degradation.
泛素化在IGF-1受体信号传导和降解中的作用
阅读:3
作者:Sehat Bita, Andersson Sandra, Vasilcanu Radu, Girnita Leonard, Larsson Olle
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2007 | 起止号: | 2007 Apr 4; 2(4):e340 |
| doi: | 10.1371/journal.pone.0000340 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
