We present a novel approach to enhance the quality of human motion data collected by low-cost depth sensors, namely D-Mocap, which suffers from low accuracy and poor stability due to occlusion, interference, and algorithmic limitations. Our approach takes advantage of a large set of high-quality and diverse Mocap data by learning a general motion manifold via the convolutional autoencoder. In addition, the Tobit Kalman filter (TKF) is used to capture the kinematics of each body joint and handle censored measurement distribution. The TKF is incorporated with the autoencoder via latent space optimization, maintaining adherence to the motion manifold while preserving the kinematic nature of the original motion data. Furthermore, due to the lack of an open source benchmark dataset for this research, we have developed an extension of the Berkeley Multimodal Human Action Database (MHAD) by generating D-Mocap data from RGB-D images. The newly extended MHAD dataset is skeleton-matched and time-synced to the corresponding Mocap data and is publicly available. Along with simulated D-Mocap data generated from the CMU Mocap dataset and our self-collected D-Mocap dataset, the proposed algorithm is thoroughly evaluated and compared with different settings. Experimental results show that our approach can improve the accuracy of joint positions and angles as well as skeletal bone lengths by over 50%.
Human Motion Enhancement via Tobit Kalman Filter-Assisted Autoencoder.
基于Tobit卡尔曼滤波器辅助自编码器的人体运动增强
阅读:5
作者:Lannan Nate, Zhou L E, Fan Guoliang
| 期刊: | IEEE Access | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022;10:29233-29251 |
| doi: | 10.1109/access.2022.3157605 | 种属: | Human |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
