Objective.To develop and test the feasibility of a novel Single ProjectIon DrivEn Real-time Multi-contrast (SPIDERM) MR imaging technique that can generate real-time 3D images on-the-fly with flexible contrast weightings and a low latency.Approach.In SPIDERM, a 'prep' scan is first performed, with sparse k-space sampling periodically interleaved with the central k-space line (navigator data), to learn a subject-specific model, incorporating a spatial subspace and a linear transformation between navigator data and subspace coordinates. A 'live' scan is then performed by repeatedly acquiring the central k-space line only to dynamically determine subspace coordinates. With the 'prep'-learned subspace and 'live' coordinates, real-time 3D images are generated on-the-fly with computationally efficient matrix multiplication. When implemented based on a multi-contrast pulse sequence, SPIDERM further allows for data-driven image contrast regeneration to convert real-time contrast-varying images into contrast-frozen images at user's discretion while maintaining motion states. Both digital phantom andin-vivoexperiments were performed to evaluate the technical feasibility of SPIDERM.Main results.The elapsed time from the input of the central k-space line to the generation of real-time contrast-frozen 3D images was approximately 45 ms, permitting a latency of 55 ms or less. Motion displacement measured from SPIDERM and reference images showed excellent correlation (R2â¥0.983). Geometric variation from the ground truth in the digital phantom was acceptable as demonstrated by pancreas contour analysis (Dice ⥠0.84, mean surface distance ⤠0.95 mm). Quantitative image quality metrics showed good consistency between reference images and contrast-varying SPIDREM images inin-vivostudies (meanNMRSE=0.141,PSNR=30.12,SSIM=0.88).Significance.SPIDERM is capable of generating real-time multi-contrast 3D images with a low latency. An imaging framework based on SPIDERM has the potential to serve as a standalone package for MR-guided radiation therapy by offering adaptive simulation through a 'prep' scan and real-time image guidance through a 'live' scan.
Single projection driven real-time multi-contrast (SPIDERM) MR imaging using pre-learned spatial subspace and linear transformation.
使用预先学习的空间子空间和线性变换的单投影驱动实时多对比度(SPIDERM)MR成像
阅读:4
作者:Han Pei, Chen Junzhou, Xiao Jiayu, Han Fei, Hu Zhehao, Yang Wensha, Cao Minsong, Ling Diane C, Li Debiao, Christodoulou Anthony G, Fan Zhaoyang
| 期刊: | Physics in Medicine and Biology | 影响因子: | 3.400 |
| 时间: | 2022 | 起止号: | 2022 Jun 27; 67(13):10 |
| doi: | 10.1088/1361-6560/ac783e | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
