Investigating the N-terminal linker histone H1 subtypes as substrates for JmjC lysine demethylases.

研究 N 端连接组蛋白 H1 亚型作为 JmjC 赖氨酸去甲基酶的底物

阅读:5
作者:Türkmen Vildan A, Tumber Anthony, Salah Eidarus, Kaur Samanpreet, Schofield Christopher J, Mecinović Jasmin
Members of the Jumonji C (JmjC) subfamily of non-heme Fe(ii) and 2-oxoglutarate (2OG) dependent N (ε)-lysine demethylases have established roles in catalysing demethylation of N (ε)-methylated lysine residues in core histones; their roles in accepting linker H1 histones as substrates have been less well explored. We report studies on the H1 substrate specificity of human JmjC lysine demethylases (KDMs), specifically KDM3A-C, KDM4A, KDM4D, KDM4E, KDM5D, and KDM6B, for mono-, di- and trimethylated N (ε)-lysine residues in peptide fragments of the N-terminal tail of human linker histone H1 isoforms (H1.2, H1.3, H1.4 and H1.5). The KDM4s, but not the other tested JmjC KDMs, catalysed demethylation of tri- and dimethylated H1 peptide isoforms with activities: KDM4E > KDM4D > KDM4A. The order of substrate preference for KDM4E was H1.2K26me3 > H1.5K26me3 ≈ H1.3K24me3 > H1.2K25me3 ≈ H1.4K25me3. For KDM4D, the most efficient tested substrate was H1.5K26me3. Among the dimethylated H1 peptide isoforms, H1.3K24me2 appeared to be the most efficient KDM4E substrate, with comparable activity to the core histone H3K9me2 substrate. The results demonstrate that JmjC KDM4s can accept the N-terminal H1 tails as substrates, further highlighting the potential for flexibility in substrate and product selectivity of the JmjC KDMs, in particular, within the KDM4 subfamily. Molecular and cellular investigations on JmjC KDM-catalysed H1 demethylation are of molecular and biomedical interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。