Many lung diseases, such as the acute respiratory distress syndrome (ARDS), display significant regional heterogeneity with patches of severely injured tissue adjacent to apparently healthy tissue. Current mouse models that aim to mimic ARDS generally produce diffuse injuries that cannot reproducibly generate ARDS's regional heterogeneity. This deficiency prevents the evaluation of how well therapeutic agents reach the most injured regions and precludes many regenerative medicine studies since it is not possible to know which apparently healing regions suffered severe injury initially. Finally, these diffuse injury models must be relatively mild to allow for survival, as their diffuse nature does not allow for residual healthy lung to keep an animal alive long enough for many drug and regenerative medicine studies. To solve all of these deficiencies in current animal models, we have created a simple and reproducible technique to selectively induce lung injury in specific areas of the lung. Our technique, catheter-in-catheter selective lung injury (CICSLI), involves guiding an inner catheter to a particular area of the lung and delivering an injurious agent mixed with nanoparticles (fluorescently and/or radioactively labeled) that can be used days later to track the location and extent of where the initial injury occurred. Furthermore, we demonstrate that CICSLI can produce a more severe injury than diffuse models, yet has much higher survival since CICSLI intentionally leaves lung regions undamaged. Collectively, these attributes of CICSLI will allow investigators to better study how drugs act within heterogeneous lung pathologies and how regeneration occurs in severely damaged lung tissue, thereby aiding the development of new therapies for ARDS and other heterogenous lung diseases.
Using selective lung injury to improve murine models of spatially heterogeneous lung diseases.
利用选择性肺损伤来改善空间异质性肺部疾病的小鼠模型
阅读:4
作者:Paris Andrew J, Guo Lei, Dai Ning, Katzen Jeremy B, Patel Priyal N, Worthen G Scott, Brenner Jacob S
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2019 | 起止号: | 2019 Apr 3; 14(4):e0202456 |
| doi: | 10.1371/journal.pone.0202456 | 研究方向: | 毒理研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
