Owing to the various beneficial properties of the popular spice saffron, the interaction of safranal, a secondary metabolite of the former, with hen egg white lysozyme was investigated. The formation of a complex was evidenced by UV-visible spectroscopy. Fluorescence quenching experiments were also performed to understand the binding mechanism and to evaluate the forces involved in binding. The strong absorption of safranal in the range of excitation and emission wavelengths of lysozyme fluorescence required the correction of the inner filter effect for fluorescence spectra to obtain the apparent extent of binding. There was a considerable difference between the observed spectra and corrected spectra, and a similar observation was found in the case of synchronous fluorescence spectra. From the analysis of quenching data, it was found that the mechanism involved in quenching was static with 1:1 binding between them. The interaction was found to be driven, mainly, by hydrophobic forces and hydrogen bonding. Safranal had negligible impact on the secondary structure of lysozyme. The interaction was also studied by molecular docking, and the results were in good agreement with the results obtained experimentally. The binding site of safranal was in the big hydrophobic cavity of lysozyme. The amino acids involved in the interaction were Asp52, Ile58, Gln57, Asn59, Trp62, Trp63, Trp108, Ile98, Asp101, and Ala107.
Spectroscopic and Molecular Docking Investigation on the Noncovalent Interaction of Lysozyme with Saffron Constituent "Safranal".
溶菌酶与藏红花成分“藏红花醛”的非共价相互作用的光谱学和分子对接研究
阅读:3
作者:Ali Mohd Sajid, Al-Lohedan Hamad A
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2020 | 起止号: | 2020 Apr 16; 5(16):9131-9141 |
| doi: | 10.1021/acsomega.9b04291 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
