Axis elongation of the vertebrate embryo involves the generation of cell lineages from posterior progenitor populations. We investigated the molecular mechanism governing axis elongation in vertebrates using the Araucana rumpless chicken. Araucana embryos exhibit a defect in axis elongation, failing to form the terminal somites and concomitant free caudal vertebrae, pygostyle, and associated tissues of the tail. Through whole genome sequencing of six Araucana we have identified a critical 130 kb region, containing two candidate causative SNPs. Both SNPs are proximal to the IRX1 and IRX2 genes, which are required for neural specification. We show that IRX1 and IRX2 are both misexpressed within the bipotential chordoneural hinge progenitor population of Araucana embryos. Expression analysis of BRA and TBX6, required for specification of mesoderm, shows that both are downregulated, whereas SOX2, required for neural patterning, is expressed in ectopic epithelial tissue. Finally, we show downregulation of genes required for the protection and maintenance of the tailbud progenitor population from the effects of retinoic acid. Our results support a model where the disruption in balance of mesoderm and neural fate results in early depletion of the progenitor population as excess neural tissue forms at the expense of mesoderm, leading to too few mesoderm cells to form the terminal somites. Together this cascade of events leads to axis truncation.
A novel gain-of-function mutation of the proneural IRX1 and IRX2 genes disrupts axis elongation in the Araucana rumpless chicken.
神经前体基因 IRX1 和 IRX2 的新型功能获得性突变破坏了阿拉乌卡纳无臀鸡的轴向延伸
阅读:9
作者:Freese Nowlan H, Lam Brianna A, Staton Meg, Scott Allison, Chapman Susan C
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2014 | 起止号: | 2014 Nov 5; 9(11):e112364 |
| doi: | 10.1371/journal.pone.0112364 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
