A Motion-from-Form Mechanism Contributes to Extracting Pattern Motion from Plaids.

通过形状运动机制可以提取格子图案的运动规律

阅读:3
作者:Quaia Christian, Optican Lance M, Cumming Bruce G
Since the discovery of neurons selective for pattern motion direction in primate middle temporal area MT (Albright, 1984; Movshon et al., 1985), the neural computation of this signal has been the subject of intense study. The bulk of this work has explored responses to plaids obtained by summing two drifting sinusoidal gratings. Unfortunately, with these stimuli, many different mechanisms are similarly effective at extracting pattern motion. We devised a new set of stimuli, obtained by summing two random line stimuli with different orientations. This allowed several novel manipulations, including generating plaids that do not contain rigid 2D motion. Importantly, these stimuli do not engage most of the previously proposed mechanisms. We then recorded the ocular following responses that such stimuli induce in human subjects. We found that pattern motion is computed even with stimuli that do not cohere perceptually, including those without rigid motion, and even when the two gratings are presented separately to the two eyes. Moderate temporal and/or spatial separation of the gratings impairs the computation. We show that, of the models proposed so far, only those based on the intersection-of-constraints rule, embedding a motion-from-form mechanism (in which orientation signals are used in the computation of motion direction signals), can account for our results. At least for the eye movements reported here, a motion-from-form mechanism is thus involved in one of the most basic functions of the visual motion system: extracting motion direction from complex scenes. SIGNIFICANCE STATEMENT: Anatomical considerations led to the proposal that visual function is organized in separate processing streams: one (ventral) devoted to form and one (dorsal) devoted to motion. Several experimental results have challenged this view, arguing in favor of a more integrated view of visual processing. Here we add to this body of work, supporting a role for form information even in a function--extracting pattern motion direction from complex scenes--for which decisive evidence for the involvement of form signals has been lacking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。