Neuroendocrine Control of Synaptic Transmission by PHAC-1 in C. elegans.

PHAC-1 在秀丽隐杆线虫中对突触传递的神经内分泌控制

阅读:7
作者:Stratigi Aikaterini, Soler-García Miguel, Krout Mia, Shukla Shikha, De Bono Mario, Richmond Janet E, Laurent Patrick
A dynamic interplay between fast synaptic signals and slower neuromodulatory signals controls the excitatory/inhibitory (E/I) balance within neuronal circuits. The mechanisms by which neuropeptide signaling is regulated to maintain E/I balance remain uncertain. We designed a genetic screen to isolate genes involved in the peptidergic maintenance of the E/I balance in the C. elegans motor circuit. This screen identified the C. elegans orthologs of the presynaptic phosphoprotein synapsin (snn-1) and the protein phosphatase 1 (PP1) regulatory subunit PHACTR1 (phac-1). We demonstrate that both phac-1 and snn-1 alter the motor behavior of C. elegans, and genetic interactions suggest that SNN-1 contributes to PP1-PHAC-1 holoenzyme signaling. De novo variants of human PHACTR1, associated with early-onset epilepsies [developmental and epileptic encephalopathy 70 (DEE70)], when expressed in C. elegans resulted in constitutive PP1-PHAC-1 holoenzyme activity. Unregulated PP1-PHAC-1 signaling alters the synapsin and actin cytoskeleton and increases neuropeptide release by cholinergic motor neurons, which secondarily affects the presynaptic vesicle cycle. Together, these results clarify the dominant mechanisms of action of the DEE70 alleles and suggest that altered neuropeptide release may alter E/I balance in DEE70.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。