Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18â¯mg/kg x 5â¯days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration.
慢病毒介导的GD3合成酶敲低可防止MPTP诱导的运动障碍和神经退行性变
阅读:3
作者:Dhanushkodi Anandh, Xue Yi, Roguski Emily E, Ding Yun, Matta Shannon G, Heck Detlef, Fan Guo-Huang, McDonald Michael P
| 期刊: | Neuroscience Letters | 影响因子: | 2.000 |
| 时间: | 2019 | 起止号: | 2019 Jan 23; 692:53-63 |
| doi: | 10.1016/j.neulet.2018.10.038 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
