BACKGROUND: Mitochondrial dysfunction and oxidative stress are closely associated with the pathogenesis of Parkinson's disease. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) is thought to play multiple roles in the regulation of mitochondrial biogenesis and cellular energy metabolism. We recently reported that altering PGC-1α gene expression modulates mitochondrial functions in N-methyl-4-phenylpyridinium ion (MPP(+)) treated human SH-SY5Y neuroblastoma cells, possibly via the regulation of Estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2) and peroxisome proliferator-activated receptor γ (PPARγ) expression. In the present study, we aimed to further investigate the potential beneficial effects of PGC-1α in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated C57BL mice. METHODS: The overexpression or knockdown of the PGC-1α gene in the mouse model of dopaminergic neurotoxicity was performed using a stereotactic injection of lentivirus in MPTP-treated male C57BL/6 mice. Mice were randomly assigned to one of 6 groups (n=24 per group): normal saline (NS) intraperitoneal injection (i.p.) (con); MPTP i.p. (M); solvent of the lentivirus striatal injection (lentivirus control) + MPTP i.p. (LVcon+M); lentivirus striatal injection + MPTP i.p. (LV+M); LV-PGC-1α striatum injection + MPTP i.p. (LVPGC+M); and LV-PGC-1α-siRNA striatal injection + MPTP i.p. (LVsiRNA+M). Intraperitoneal injections of MPTP/NS were conducted two weeks after lentivirus injection. RESULTS: We found significant improvement in motor behavior and increases in tyrosine hydroxylase expression in the substantia nigra (SN) in the brains of mice in the LVPGC+M group. The opposite tendency was observed in those in the LVsiRNA+M group. The expression of superoxide dismutase (SOD) in the SN region was also consistent with the changes in PGC-1α expression. Electron microscopy showed an increasing trend in the mitochondrial density in the LVPGC+M group and a decreasing trend in the M and LVsiRNA+M groups compared to that in the controls. CONCLUSIONS: Our results indicated that PGC-1α rescues the effects of MPTP-induced mitochondrial dysfunction in C57BL mice.
Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity.
PGC-1α 在 MPTP 诱导的多巴胺能神经毒性小鼠模型黑质中的有益作用
阅读:4
作者:Wang Yingqing, Chen Chun, Huang Wanling, Huang Maoxin, Wang Juhua, Chen Xiaochun, Ye Qinyong
| 期刊: | Aging-Us | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Oct 21; 11(20):8937-8950 |
| doi: | 10.18632/aging.102357 | 种属: | Mouse |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
