Self-immolative chemistries that respond in an irreversible manner to external stimuli are highly attractive to permanently degrade filamentous supramolecular biomaterials. Within the monomer, a balance needs to be struck between its capacity to be supramolecularly polymerized and degraded at an appropriate rate for a given application. Herein, we unravel the structure-property-function relationships of a library of squaramide-based bolaamphiphiles bearing a central disulfide-based self-immolative spacer to construct supramolecular polymers responsive to chemical stimuli in aqueous solutions. We examine the impact of changing the alkyl domain length (2 to 12 methylene units) on the formation of supramolecular filaments and their rate of degradation in response to a biological antioxidant, glutathione. A minimum of an octyl spacer is required to robustly form supramolecular polymers that can be irreversibly degraded through a cyclization-elimination reaction of the self-immolative spacer triggered by thiol-disulfide exchange. Further increasing the peripheral alkyl chain length to a decyl spacer increases the ordered packing of the amphiphiles, hindering their chemical degradation. This study provides a framework to design chemically responsive filamentous supramolecular polymers based on bolaamphiphiles that can be irreversibly degraded in aqueous solutions for their eventual application as biomedical materials.
Hydrophobic Domain Modulation of Chemical Responsiveness in a Bolaamphiphile-Based Supramolecular Monomer.
基于双亲分子的超分子单体的疏水域对化学响应性的调控
阅读:5
作者:Vittala Sandeepa K, Liu Tingxian, van Zwol Suzanne, Fehér Bence, Voets Ilja K, Kieltyka Roxanne E
| 期刊: | Chembiochem | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Feb 3; 26(5):e202400348 |
| doi: | 10.1002/cbic.202400348 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
