DNA methylation results in a variety of human diseases and the DNA methylation process is mediated by DNA methyltransferases, which have therefore become potential targets for disease treatment. In this study, a turn-off nanogold biological probe system was successfully created for determining the activity of DNA methyltransferases (M.SssI MTase). A dumbbell-shaped DNA probe with a site-recognizable region of M. SssI MTase and a fluorescent signal probe based on a DNA-templated gold nanocluster (DNA-AuNC) probe combined for the quantitative detection of M. SssI MTase. This dumbbell-shaped DNA probe was methylated by M. SssI MTase, and the dumbbell-shaped DNA probe with a methyl group was recognized by an endonuclease (GlaI) and cleaved into hairpin DNA. The dGTP was added to the 3'-OH terminus of hairpin DNA fragments in the presence of terminal deoxynucleotidyl transferase (TdT), and the hairpin DNA was extended with a G-rich sequence that can be used as an inactivation probe. When the inactivation probe was combined with the signal probe, the fluorescent signal disappeared due to the photoinduced electron transfer effect. Methyltransferase activity was then detected based on the turn-off principle of the fluorescence signal from the DNA-AuNCs. The bioprobe enabled sensitive detection of M. SssI MTase with a detection limit of 0.178 UÂ mL(-1) and good specificity. The bioprobe demonstrated good detection efficiency in both human serum and cell lysates, and its unique fluorescence turn-off mechanism provided good resistance to interference, thus increasing its potential application in complex biological samples. Moreover, it is suitable for screening and assessing the inhibitory activity of M. SssI MTase inhibitors, and therefore has significant potential for disease diagnosis and drug discovery.
Fluorescence turn-off strategy for sensitive detection of DNA methyltransferase activity based on DNA-templated gold nanoclusters.
基于DNA模板金纳米簇的荧光关闭策略用于灵敏检测DNA甲基转移酶活性
阅读:5
作者:Fangyu Zhou, Chen Hui, Fan Tingting, Guo Zixia, Liu Feng
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2023 | 起止号: | 2023 Jun 28; 9(7):e17724 |
| doi: | 10.1016/j.heliyon.2023.e17724 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
