Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.
Structure-based identification of salicylic acid derivatives as malarial threonyl tRNA-synthetase inhibitors.
基于结构的鉴定水杨酸衍生物作为疟疾苏氨酰tRNA合成酶抑制剂
阅读:3
作者:Bobrovs Raitis, Bolsakova Jekaterina, Buitrago Jhon Alexander Rodriguez, Varaceva Larisa, Skvorcova Marija, Kanepe Iveta, Rudnickiha Anastasija, Parisini Emilio, Jirgensons Aigars
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Apr 1; 19(4):e0296995 |
| doi: | 10.1371/journal.pone.0296995 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
