distect: automatic sample-position tracking for X-ray experiments using computer vision algorithms.

distect:利用计算机视觉算法自动跟踪 X 射线实验中的样品位置

阅读:5
作者:Berg Michael, Furrer Dirk, Thominet Vincent, Wang Xiaoqiang, Zeugin Stefan, Grabner Helmut, Stockinger Kurt, Piamonteze Cinthia
Soft X-ray spectroscopy is an important technique for measuring the fundamental properties of materials. However, for measurements of samples in the sub-millimetre range, many experimental setups show limitations. Position drifts on the order of hundreds of micrometres during thermal stabilization of the system can last for hours of expensive beam time. To compensate for drifts, sample tracking and feedback systems must be used. However, in complex sample environments where sample access is very limited, many existing solutions cannot be applied. In this work, we apply a robust computer vision algorithm to automatically track and readjust the sample position in the dozens of micrometres range. Our approach is applied in a complex sample environment, where the sample is in an ultra-high vacuum chamber, surrounded by cooled thermal shields to reach sample temperatures down to 2.5†K and in the center of a superconducting split coil. Our implementation allows sample-position tracking and adjustment in the vertical direction since this is the dimension where drifts occur during sample temperature change in our setup. The approach can be easily extended to 2D. The algorithm enables a factor of ten improvement in the overlap of a series of X-ray absorption spectra in a sample with a vertical size down to 70†µm. This solution can be used in a variety of experimental stations, where optical access is available and sample access by other means is reduced.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。