Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson's disease models

鱼藤酮诱导的帕金森病模型中DNA聚合酶β的细胞周期调控

阅读:3
作者:Hongcai Wang ,Yan Chen ,Jinbo Chen ,Zhentao Zhang ,Wansheng Lao ,Xizhi Li ,Jinsha Huang ,Tao Wang

Abstract

In Parkinson's disease (PD), neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β) in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM) of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM) of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC) treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN) of rats following stereotactic (ST) infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc) and the substantia nigra pars reticulate (SNr) of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。