Cortical graph smoothing: a novel method for exploiting DWI-derived anatomical brain connectivity to improve EEG source estimation.

皮层图平滑:一种利用 DWI 衍生的解剖脑连接来改进 EEG 源估计的新方法

阅读:6
作者:Hammond David K, Scherrer Benoit, Warfield Simon K
The electroencephalography source estimation problem consists of inferring cortical activation from measurements of electrical potential taken on the scalp surface. This inverse problem is intrinsically ill-posed. In particular the dimensionality of cortical sources greatly exceeds the number of electrode measurements, and source estimation requires regularization to obtain a unique solution. In this work, we introduce a novel regularization function called cortical graph smoothing, which exploits knowledge of anatomical connectivity available from diffusion-weighted imaging. Given a weighted graph description of the anatomical connectivity of the brain, cortical graph smoothing penalizes the weighted sum of squares of differences of cortical activity across the graph edges, thus encouraging solutions with consistent activation across anatomically connected regions. We explore the performance of the cortical graph smoothing source estimates for analysis of the event related potential for simple motor tasks, and compare against the commonly used minimum norm, weighted minimum norm, LORETA and sLORETA source estimation methods. Evaluated over a series of 18 subjects, the proposed cortical graph smoothing method shows superior localization accuracy compared to the minimum norm method, and greater relative peak intensity than the other comparison methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。