Differentiation from neural progenitor to mature neuron requires a metabolic switch, whereby mature neurons become almost entirely dependent upon oxidative phosphorylation (OXPHOS) for ATP production. Although more efficient with respect to ATP production, OXPHOS produces additional reactive oxygen species, as compared to glycolysis; thus, endogenous mechanisms to quench free radicals are essential for the maintenance of neuronal health. Melatonin is synthesized in neuronal mitochondria and has a dual role as a free radical scavenger and as an inhibitor of mitochondrial-triggered cell death and proinflammatory pathways. Previously, we showed that loss of endogenous melatonin induced mitochondrial DNA (mtDNA) and cytochrome c (CytC) release triggering pathological inflammation and cell death pathways, respectively. Here we find that in mature neurons, but not undifferentiated neuronal cells, melatonin deficiency altered metabolic reprogramming in aralkylamine N-acetyltransferase knockout (AANAT-KO) neurons as compared with neurons expressing AANAT. Interestingly, there are no differences in neural progenitors regardless of AANAT status. In addition, AANAT-KO deficiency elevated BAK and BAX levels in AANAT-KO neurons. Further, we found that exogenous melatonin treatment of AANAT-KO cells during differentiation into mature neurons rescued metabolic reprogramming defects and restored normal BAK/BAX levels. Thus, we demonstrated that the metabolic reprogramming and subsequent consequences of the switch to OXPHOS that normally occurs during neuronal maturation are compromised by melatonin deficiency and rescued by melatonin supplementation.
Melatonin Deficits Result in Pathologic Metabolic Reprogramming in Differentiated Neurons.
褪黑激素缺乏会导致分化神经元发生病理性代谢重编程
阅读:7
作者:Jauhari Abhishek, Monek Adam C, Suofu Yalikun, Amygdalos Olivia R, Singh Tanisha, Baranov Sergei V, Carlisle Diane L, Friedlander Robert M
| 期刊: | Journal of Pineal Research | 影响因子: | 6.300 |
| 时间: | 2025 | 起止号: | 2025 Mar;77(2):e70037 |
| doi: | 10.1111/jpi.70037 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
