Quantitative comparison of fluorescent proteins using protein nanocages in live cells.

利用蛋白质纳米笼对活细胞中的荧光蛋白进行定量比较

阅读:32
作者:Viola Giulia, Ibrahim Yasmeen W, Jacobs Kyle A, Lemière Joël, Kutys Matthew L, Wittmann Torsten
To standardize comparison of fluorescent protein performance on a molecule-by-molecule basis in a physiological intracellular environment, we constructed fluorescent protein-tagged I3-01 peptides that self-assemble into stable 60-subunit dodecahedrons inside live mammalian cells. We were especially interested in determining which of the recently published monomeric StayGold variants is best for live microscopy in mammalian cells. Combining nanocage brightness and photobleaching measurements into a single metric, mStayGold stood out as far superior to all other green and red fluorescent proteins we tested with a functional lifetime that is at least 8-10-fold longer compared with EGFP or mEmerald. Analysis of intracellular nanocage diffusion further confirmed the monomeric nature of mStayGold, and we demonstrate that mStayGold-tagged nanocages can serve as highly photostable nanoparticles to analyze intracellular biophysical properties. Analysis of frequently used red fluorescent proteins was less encouraging and recent mScarlet or mRuby variants did not perform substantially better than mCherry on a typical spinning disc confocal microscope system, highlighting the importance of a standardized method to benchmark fluorescent proteins to make optimal choices for specific experimental setups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。