Mitochondrial electron transport chain blockers enhance 2-deoxy-D-glucose induced oxidative stress and cell killing in human colon carcinoma cells.

线粒体电子传递链阻滞剂可增强 2-脱氧-D-葡萄糖诱导的人类结肠癌细胞氧化应激和细胞死亡

阅读:4
作者:Fath Melissa A, Diers Anne R, Aykin-Burns Nukhet, Simons Andrean L, Hua Lei, Spitz Douglas R
Increasing evidence suggests that cancer cells (relative to normal cells) have altered mitochondrial electron transport chains (ETC) that are more likely to form reactive oxygen species (ROS; i.e., O(2)(*-) and H(2)O(2)) resulting in a condition of chronic metabolic oxidative stress, that maybe compensated for by increasing glucose and hydroperoxide metabolism. In the current study, the ability of an inhibitor of glucose metabolism, 2-deoxy-D-glucose (2DG), combined with mitochondrial electron transport chain blockers (ETCBs) to enhance oxidative stress and cytotoxicity was determined in human colon cancer cells. Treatment of HT29 and HCT116 cancer cells with Antimycin A (Ant A) or rotenone (Rot) increased carboxy-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidine (DHE) oxidation, caused the accumulation of glutathione disulfide and enhanced 2DG-induced cell killing. In contrast, Rot did not enhance the toxicity of 2DG in normal human fibroblasts supporting the hypotheses that cancer cells are more susceptible to inhibition of glucose metabolism in the presence of ETCBs. In addition, 2-methoxy-antimycin A (Meth A; an analog of Ant A that does not have ETCB activity) did not enhance 2DG-induced DHE oxidation or cytotoxicity in cancer cells. Finally, in HT29 tumor bearing mice treated with the combination of 2DG (500 mg/kg) + Rot (2 mg/kg) the average rate of tumor growth was significantly slower when compared to control or either drug alone. These results show that 2DG-induced cytotoxicity and oxidative stress can be significantly enhanced by ETCBs in human colon cancer cells both in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。