While research has identified an important contribution for metals, such as iron, in microbial pathogenesis, the roles of other transition metals, such as copper, remain mostly unknown. Recent evidence points to a requirement for copper homeostasis in the virulence of Cryptococcus neoformans based on a role for a CUF1 copper regulatory factor in mouse models and in a human patient cohort. C. neoformans is an important fungal pathogen that results in an estimated 600,000 AIDS-related deaths yearly. In the present studies, we found that a C. neoformans mutant lacking the CUF1-dependent copper transporter, CTR4, grows normally in rich medium at 37°C but has reduced survival in macrophages and attenuated virulence in a mouse model. This reduced survival and virulence were traced to a growth defect under nutrient-restricted conditions. Expression studies using a full-length CTR4-fluorescent fusion reporter construct demonstrated robust expression in macrophages, brain, and lung, the latter shown by ex vivo fluorescent imaging. Inductively coupled mass spectroscopy (ICP-MS) was used to probe the copper quota of fungal cells grown in defined medium and recovered from brain, which suggested a role for a copper-protective function of CTR4 in combination with cell metallothioneins under copper-replete conditions. In summary, these data suggest a role for CTR4 in copper-related homeostasis and subsequently in fungal virulence. IMPORTANCE: Crytococcus neoformans is a significant global fungal pathogen, and copper homeostasis is a relatively unexplored aspect of microbial pathogenesis that could lead to novel therapeutics. Previous studies correlated expression levels of a Ctr4 copper transporter to development of meningoencephalitis in a patient cohort of solid-organ transplants, but a direct role for Ctr4 in mammalian pathogenesis has not been demonstrated. The present studies utilize a Îctr4 mutant strain which revealed an important role for CTR4 in C. neoformans infections in mice and relate the gene product to homeostatic control of copper and growth under nutrient-restricted conditions. Robust expression levels of CTR4 during fungal infection were exploited to demonstrate expression and lung cryptococcal disease using ex vivo fluorescence imaging. In summary, these studies are the first to directly demonstrate a role for a copper transporter in fungal disease and provide an ex vivo imaging tool for further study of cryptococcal gene expression and pathogenesis.
Role of CTR4 in the Virulence of Cryptococcus neoformans.
CTR4在新型隐球菌毒力中的作用
阅读:4
作者:Waterman Scott R, Park Yoon-Dong, Raja Meera, Qiu Jin, Hammoud Dima A, O'Halloran Thomas V, Williamson Peter R
| 期刊: | mBio | 影响因子: | 4.700 |
| 时间: | 2012 | 起止号: | 2012 Oct 2; 3(5):e00285-12 |
| doi: | 10.1128/mBio.00285-12 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
