Gellan gum-based granular gels as suspension media for biofabrication.

以结冷胶为基础的颗粒凝胶作为生物制造的悬浮介质

阅读:7
作者:McCormack Andrew, Porcza Laura M, Leslie Nicholas R, Melchels Ferry P W
Engineering 3D tissue-like constructs for applications such as regenerative medicine remains a major challenge in biomedical research. Recently, self-healing, viscoplastic fluids have been introduced as suspension media to allow lower viscosity, water-rich bioinks to be printed within them for the fabrication of more biomimetic structures. Here, we present gellan gum granular gels produced through the application of shear during gelation, as a candidate suspension medium. We demonstrate that these granular gels exhibit viscoplasticity over a wide range of temperatures, permitting their use for 3D bioprinting of filaments and droplets at low (4°C) as well as physiological temperatures. These granular gels exhibit very low yield stresses (down to 0.4 Pa) which facilitated printing at print speeds up to 60 mm.s-1. Furthermore, we demonstrate the printing of cell-laden droplets maintained over 7 days to show the potential for multiple days of cell culture, as well as the fabrication of hydrogel features within a crosslinkable version of the suspension medium containing granular gellan gum and gelatine-methacryloyl. The combination of ease of preparation, high printing speed, wide temperature tolerance, and crosslinkability makes this gellan gum sheared through cooling-induced gelation an attractive candidate for suspended biofabrication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。