Four near-complete genome assemblies reveal the landscape and evolution of centromeres in Salicaceae.

四个近乎完整的基因组组装揭示了杨柳科着丝粒的分布和演化

阅读:4
作者:Wang Yubo, Zhao Lulu, Wang Deyan, Chen Kai, Luo Tiannan, Luo Jianglin, Jiang Chengzhi, He Zhoujian, Huang Heng, Xie Jiaxiao, Jiang Yuanzhong, Liu Jianquan, Ma Tao
BACKGROUND: Centromeres play a crucial role in maintaining genomic stability during cell division. They are typically composed of large arrays of tandem satellite repeats, which hinder high-quality assembly and complicate our efforts to understand their evolution across species. Here, we use long-read sequencing to generate near-complete genome assemblies for two Populus and two Salix species belonging to the Salicaceae family and characterize the genetic and epigenetic landscapes of their centromeres. RESULTS: The results show that only limited satellite repeats are present as centromeric components in these species, while most of them are located outside the centromere but exhibit a homogenized structure similar to that of the Arabidopsis centromeres. Instead, the Salicaceae centromeres are mainly composed of abundant transposable elements, including CRM and ATHILA, while LINE elements are exclusively discovered in the poplar centromeres. Comparative analysis reveals that these centromeric repeats are extensively expanded and interspersed with satellite arrays in a species-specific and chromosome-specific manner, driving rapid turnover of centromeres both in sequence compositions and genomic locations in the Salicaceae. CONCLUSIONS: Our results highlight the dynamic evolution of diverse centromeric landscapes among closely related species mediated by satellite homogenization and widespread invasions of transposable elements and shed further light on the role of centromere in genome evolution and species diversification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。