In this study, three (3) neural networks (NN) were designed to discriminate between malignant (n = 78) and benign (n = 88) breast tumors using their respective attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral data. A proposed NN-based sensitivity analysis was performed to determine the most significant IR regions that distinguished benign from malignant samples. The result of the NN-based sensitivity analysis was compared to the obtained results from FTIR visual peak identification. In training each NN models, a 10-fold cross validation was performed and the performance metrics-area under the curve (AUC), accuracy, positive predictive value (PPV), specificity rate (SR), negative predictive value (NPV), and recall rate (RR)-were averaged for comparison. The NN models were compared to six (6) machine learning models-logistic regression (LR), Naïve Bayes (NB), decision trees (DT), random forest (RF), support vector machine (SVM) and linear discriminant analysis (LDA)-for benchmarking. The NN models were able to outperform the LR, NB, DT, RF, and LDA for all metrics; while only surpassing the SVM in accuracy, NPV and SR. The best performance metric among the NN models was 90.48% ± 10.30% for AUC, 96.06% ± 7.07% for ACC, 92.18 ± 11.88% for PPV, 94.19 ± 10.57% for NPV, 89.04% ± 16.75% for SR, and 94.34% ± 10.54% for RR. Results from the proposed sensitivity analysis were consistent with the visual peak identification. However, unlike the FTIR visual peak identification method, the NN-based method identified the IR region associated with C-OH C-OH group carbohydrates as significant. IR regions associated with amino acids and amide proteins were also determined as possible sources of variability. In conclusion, results show that ATR-FTIR via NN is a potential diagnostic tool. This study also suggests a possible more specific method in determining relevant regions within a sample's spectrum using NN.
Detection of breast cancer by ATR-FTIR spectroscopy using artificial neural networks.
利用人工神经网络通过 ATR-FTIR 光谱检测乳腺癌
阅读:5
作者:Tomas Rock Christian, Sayat Anthony Jay, Atienza Andrea Nicole, Danganan Jannah Lianne, Ramos Ma Rollene, Fellizar Allan, Notarte Kin Israel, Angeles Lara Mae, Bangaoil Ruth, Santillan Abegail, Albano Pia Marie
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Jan 26; 17(1):e0262489 |
| doi: | 10.1371/journal.pone.0262489 | 研究方向: | 神经科学 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
