Application of a GRF-GIF chimera enhances plant regeneration for genome editing in tomato.

应用 GRF-GIF 嵌合体可增强番茄基因组编辑的植物再生能力

阅读:5
作者:Swinnen Gwen, Lizé Eléonore, Loera Sánchez Miguel, Stolz Stéphanie, Soyk Sebastian
Genome editing has become a routine tool for functionally characterizing plant and animal genomes. However, stable genome editing in plants remains limited by the time- and labour-intensive process of generating transgenic plants, as well as by the efficient isolation of desired heritable edits. In this study, we evaluated the impact of the morphogenic regulator GRF-GIF on plant regeneration and genome editing outcomes in tomato. We demonstrate that expressing a tomato GRF-GIF chimera reliably accelerates the onset of shoot regeneration from callus tissue culture by approximately one month and nearly doubles the number of recovered transgenic plants. Consequently, the GRF-GIF chimera enables the recovery of a broader range of edited haplotypes and simplifies the isolation of mutants harbouring heritable edits, but without markedly interfering with plant growth and development. Based on these findings, we outline strategies that employ basic or advanced diagnostic pipelines for efficient isolation of single- and higher-order mutants in tomato. Our work represents a technical advantage for tomato transformation and genome editing, with potential applications across other Solanaceae species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。