The Smc5-Smc6 complex in Saccharomyces cerevisiae is both essential for growth and important for coping with genotoxic stress. While it facilitates damage tolerance throughout the genome under genotoxin treatment, its function during unperturbed growth is mainly documented for repetitive DNA sequence maintenance. Here we provide physical and genetic evidence showing that the Smc5-Smc6 complex regulates recombination at non-repetitive loci such as centromeres in the absence of DNA damaging agents. Mutating Smc6 results in the accumulation of recombination intermediates at centromeres and other unique sequences as assayed by 2D gel analysis. In addition, smc6 mutant cells exhibit increased levels of Rad52 foci that co-localize with centromere markers. A rad52 mutation that decreases centromeric, but not overall, levels of Rad52 foci in smc6 mutants suppresses the nocodazole sensitivity of these cells, suggesting that the Smc6-mediated regulation of recombination at centromeric regions impacts centromere-related functions. In addition to influencing recombination, the SUMO ligase subunit of the Smc5-Smc6 complex promotes the sumoylation of two kinetochore proteins and affects mitotic spindles. These results suggest that the Smc5-Smc6 complex regulates both recombination and kinetochore sumoylation to facilitate chromosomal maintenance during growth.
The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth.
Smc5-Smc6 复合物调节着丝粒区域的重组,并在正常生长过程中影响动粒蛋白的 SUMO 化
阅读:4
作者:Yong-Gonzales Vladimir, Hang Lisa E, Castellucci Federica, Branzei Dana, Zhao Xiaolan
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2012 | 起止号: | 2012;7(12):e51540 |
| doi: | 10.1371/journal.pone.0051540 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
