SICD: Novel Single-Access-Point Indoor Localization Based on CSI-MIMO with Dimensionality Reduction.

SICD:基于CSI-MIMO和降维的新型单接入点室内定位

阅读:5
作者:Zhang Yunwei, Wang Weigang, Xu Chendong, Qin Jie, Yu Shujuan, Zhang Yun
With the rise of location-based services and the rapidly growing requirements related to their applications, indoor localization based on channel state information-multiple-input multiple-output (CSI-MIMO) has become an important research topic. However, indoor localization based on CSI-MIMO has some disadvantages, including noise and high data dimensions. To overcome the above drawbacks, we proposed a novel method of indoor localization based on CSI-MIMO, named SICD. For SICD, a novel localization fingerprint was first designed which can reflect the time-frequency and space-frequency characteristics of CSI-MIMO under a single access point (AP). To reduce the redundancy in the data of CSI-MIMO amplitude, we developed a data dimensionality reduction algorithm. Moreover, by leveraging a log-normal distribution, we calculated the conditional probability of the naive Bayes classifier, which was used to predict the moving object's location. Compared with other state-of-the-art methods, the results of the experiment confirm that the SICD effectively improves localization accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。