Current estimates of the HIV epidemic indicate a decrease in the incidence of the disease in the undiagnosed subpopulation over the past 10 years. However, a lack of access to care has not been considered when modeling the population. Populations at high risk for contracting HIV are twice as likely to lack access to reliable medical care. In this paper, we consider three contributors to the HIV population dynamics: at-risk population exhaustion, lack of access to care, and usage of anti-retroviral therapy (ART) by diagnosed individuals. An extant problem in the mathematical study of this system is deriving parameter estimates due to a portion of the population being unobserved. We approach this problem by looking at the proportional change in the infected subpopulations. We obtain conservative estimates for the proportional change of the infected subpopulations using hierarchical Bayesian statistics. The estimated proportional change is used to derive epidemic parameter estimates for a system of stochastic differential equations (SDEs). Model fit is quantified to determine the best parametric explanation for the observed dynamics in the infected subpopulations. Parameter estimates derived using these methods produce simulations that closely follow the dynamics observed in the data, as well as values that are generally in agreement with prior understanding of transmission and diagnosis rates. Simulations suggest that the undiagnosed population may be larger than currently estimated without significantly affecting the population dynamics.
Estimating epidemiological parameters of a stochastic differential model of HIV dynamics using hierarchical Bayesian statistics.
利用分层贝叶斯统计方法估计 HIV 动力学随机微分模型的流行病学参数
阅读:6
作者:Dale Renee, Guo BeiBei
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Jul 25; 13(7):e0200126 |
| doi: | 10.1371/journal.pone.0200126 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
