NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina.

双极细胞轴突起始段中的 NaV1.1 通道增强了灵长类视网膜大细胞视觉通路的输入

阅读:5
作者:Puthussery Theresa, Venkataramani Sowmya, Gayet-Primo Jacqueline, Smith Robert G, Taylor W Rowland
In the primate visual system, the ganglion cells of the magnocellular pathway underlie motion and flicker detection and are relatively transient, while the more sustained ganglion cells of the parvocellular pathway have comparatively lower temporal resolution, but encode higher spatial frequencies. Although it is presumed that functional differences in bipolar cells contribute to the tuning of the two pathways, the properties of the relevant bipolar cells have not yet been examined in detail. Here, by making patch-clamp recordings in acute slices of macaque retina, we show that the bipolar cells within the magnocellular pathway, but not the parvocellular pathway, exhibit voltage-gated sodium (NaV), T-type calcium (CaV), and hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents, and can generate action potentials. Using immunohistochemistry in macaque and human retinae, we show that NaV1.1 is concentrated in an axon initial segment (AIS)-like region of magnocellular pathway bipolar cells, a specialization not seen in transient bipolar cells of other vertebrates. In contrast, CaV3.1 channels were localized to the somatodendritic compartment and proximal axon, but were excluded from the AIS, while HCN1 channels were concentrated in the axon terminal boutons. Simulations using a compartmental model reproduced physiological results and indicate that magnocellular pathway bipolar cells initiate spikes in the AIS. Finally, we demonstrate that NaV channels in bipolar cells augment excitatory input to parasol ganglion cells of the magnocellular pathway. Overall, the results demonstrate that selective expression of voltage-gated channels contributes to the establishment of parallel processing in the major visual pathways of the primate retina.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。