Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells

人类胰腺间充质干细胞中的胰岛素基因被沉默,而胰高血糖素基因没有被沉默

阅读:6
作者:Leah M Wilson, Stephen H K Wong, Ningpu Yu, Elizabeth Geras-Raaka, Bruce M Raaka, Marvin C Gershengorn

Abstract

We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures. Coexpression of all three transcription factors had little effect on INS mRNA levels but unexpectedly increased GCG mRNA at least 100,000-fold. In contrast to the endogenous promoter, an exogenous rat INS promoter was activated by expression of Pdx1 and Mafa in hIPCs. Chromatin immunoprecipitation (ChIP) assays using antibodies directed at posttranslationally modified histones show that regions of the INS and GCG genes have similar levels of activation-associated modifications but the INS gene has higher levels of repression-associated modifications. Furthermore, the INS gene was found to be less accessible to micrococcal nuclease digestion than the GCG gene. Lastly, ChIP assays show that exogenously expressed Pdx1 and Mafa bind at very low levels to the INS promoter and at 20- to 25-fold higher levels to the GCG promoter in hIPCs. We conclude that the INS gene in hIPCs is modified epigenetically ("silenced") so that it is resistant to activation by transcription factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。