Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes.

利用透明氧化铟锡微芯片电极上笼状 Ca2+ 的光解作用,控制芯片上嗜铬细胞儿茶酚胺的量子化释放

阅读:5
作者:Chen Xiaohui, Gao Yuanfang, Hossain Maruf, Gangopadhyay Shubhra, Gillis Kevin D
Photorelease of caged Ca(2+) is a uniquely powerful tool to study the dynamics of Ca(2+)-triggered exocytosis from individual cells. Using photolithography and other microfabrication techniques, we have developed transparent microchip devices to enable photorelease of caged Ca(2+), together with electrochemical detection of quantal catecholamine secretion from individual cells or cell arrays as a step towards developing high-throughput experimental devices. A 100 nm thick transparent indium-tin-oxide (ITO) film was sputter-deposited onto glass coverslips, which were then patterned into 24 cell-sized working electrodes (approximately 20 microm by 20 microm). We loaded bovine chromaffin cells with acetoxymethyl (AM) ester derivatives of the Ca(2+) cage NP-EGTA and Ca(2+) indicator dye fura-4F, then transferred these cells onto the working ITO electrodes for amperometric recordings. Upon flash photorelease of caged Ca(2+), a uniform rise of [Ca(2+)](i) within the target cell leads to quantal release of oxidizable catecholamines measured amperometrically by the underlying ITO electrode. We observed a burst of amperometric spikes upon rapid elevation of [Ca(2+)](i) and a "priming" effect of sub-stimulatory [Ca(2+)](i) on the response of cells to subsequent [Ca(2+)](i) elevation, similar to previous reports using different techniques. We conclude that UV photolysis of caged Ca(2+) is a suitable stimulation technique for higher-throughput studies of Ca(2+)-dependent exocytosis on transparent electrochemical microelectrode arrays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。