Development of an Easy-To-Use Microfluidic System to Assess Dynamic Exposure to Mycotoxins in 3D Culture Models: Evaluation of Ochratoxin A and Patulin Cytotoxicity.

开发一种易于使用的微流控系统来评估 3D 培养模型中真菌毒素的动态暴露:赭曲霉毒素 A 和棒曲霉素细胞毒性的评估

阅读:4
作者:Zingales Veronica, Piunti Caterina, Micheli Sara, Cimetta Elisa, Ruiz María-José
Mycotoxins are among the most concerning natural toxic food contaminants. Over the years, significant efforts have been made to characterize the risk associated with their exposure. However, assessing their toxicity has so far been elusive due to the lack of adequate models that closely mimic the physiological conditions of human cells in vivo. Here, we present the SpheroFlow Device (SFD), an efficient microfluidic platform designed, manufactured, and validated to evaluate mycotoxin-induced cytotoxicity under dynamic and continuous exposure in 3D culture settings. In the present study, we integrated human neuroblastoma SH-SY5Y spheroids into the SFD to assess the acute toxicity induced by the mycotoxins ochratoxin A (OTA) and patulin (PAT). The developed system enabled qualitative and quantitative measurements of concentration-response relationships and provided accurate control over the culture microenvironment. Our findings show that by enhancing 3D culture model by applying dynamic flow, SH-SY5Y spheroids exhibited different sensitivities to OTA and PAT compared to conventional static SH-SY5Y spheroids, confirming the critical role of culture models in mycotoxin toxicity assessment. This is the first study assessing the neurotoxicity of OTA and PAT on 3D neuroblastoma spheroids considering the contribution of fluid flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。